Singular value

In mathematics, in particular functional analysis, the singular values of a compact operator

acting between Hilbert spaces

, are the square roots of the (necessarily non-negative) eigenvalues of the self-adjoint operator

The singular values are non-negative real numbers, usually listed in decreasing order (σ1(T), σ2(T), …).

The largest singular value σ1(T) is equal to the operator norm of T (see Min-max theorem).

If T acts on Euclidean space

, there is a simple geometric interpretation for the singular values: Consider the image by

of the unit sphere; this is an ellipsoid, and the lengths of its semi-axes are the singular values of

The singular values are the absolute values of the eigenvalues of a normal matrix A, because the spectral theorem can be applied to obtain unitary diagonalization of

Most norms on Hilbert space operators studied are defined using singular values.

For example, the Ky Fan-k-norm is the sum of first k singular values, the trace norm is the sum of all singular values, and the Schatten norm is the pth root of the sum of the pth powers of the singular values.

Note that each norm is defined only on a special class of operators, hence singular values can be useful in classifying different operators.

In the finite-dimensional case, a matrix can always be decomposed in the form

is a rectangular diagonal matrix with the singular values lying on the diagonal.

This is the singular value decomposition.

Min-max theorem for singular values.

Matrix transpose and conjugate do not alter singular values.

is full rank, the product of singular values is

is full rank, the product of singular values is

is square and full rank, the product of singular values is

For a generic rectangular matrix

be the singular value decomposition, then the eigenvectors of

[1]: 52 The smallest singular value of a matrix A is σn(A).

It has the following properties for a non-singular matrix A: Intuitively, if σn(A) is small, then the rows of A are "almost" linearly dependent.

If it is σn(A) = 0, then the rows of A are linearly dependent and A is not invertible.

This concept was introduced by Erhard Schmidt in 1907.

Schmidt called singular values "eigenvalues" at that time.

The name "singular value" was first quoted by Smithies in 1937.

In 1957, Allahverdiev proved the following characterization of the nth singular number:[6] This formulation made it possible to extend the notion of singular values to operators in Banach space.

Note that there is a more general concept of s-numbers, which also includes Gelfand and Kolmogorov width.

Visualization of a singular value decomposition (SVD) of a 2-dimensional, real shearing matrix M . First, we see the unit disc in blue together with the two canonical unit vectors . We then see the action of M , which distorts the disc to an ellipse . The SVD decomposes M into three simple transformations: a rotation V * , a scaling Σ along the rotated coordinate axes and a second rotation U . Σ is a (square, in this example) diagonal matrix containing in its diagonal the singular values of M , which represent the lengths σ 1 and σ 2 of the semi-axes of the ellipse.