Théodore Nicolas Gobley

Théodore[1] (Nicolas) Gobley (French: [ɡɔblɛ]; 11 May 1811 in Paris – 1 September 1876 in Bagnères-de-Luchon), was the first to isolate and ultimately determine the chemical structure of lecithin, the first identified and characterized member of the phospholipids class.

While conducting various works on a very diversified range of topics very much like most pharmacist/chemists of the 19th century, Gobley singled himself out by a somehow unique lifelong pursuit in the study of lipids in the living animals reign, whereby he demonstrated the universal presence of a fundamental substance, which he named lecithin, and the exact composition of which he pursued during thirty years.

Gobley was also a philanthropist, and he was involved in the management of a local administration office for the housing of poorer people in the "Département de la Seine" (today, the greater Paris area including districts 75, 78, 91, 92, 93, 94, 95).

In a first step during 1845 ("Recherches chimiques sur le jaune d'œuf", Compte Rendu hebdomadaire Académie des Sciences 1845, 21, 766) Gobley achieved a ground breaking first work where he analysed in detail the lipids in the egg yolk, obtaining from egg yolk byproducts never before evidenced in that matter: While evidencing the first two could somehow be looked at with some more or less natural expectation, given their prevailing presence previously demonstrated in a variety of organs or corporeal fluids (such as blood, bile, brain tissues), the latter one was until then exclusively known as a byproduct of direct chemical preparation.

Gobley in addition brought full details as to the constitution of the oily part of egg yolk, which he determined to be made up of oleine, margarine and a cholesterin, previously evidenced by Louis-René Le Canu and which he demonstrated has entirely identical properties to the one (cholesterol) isolated from bile by Michel Eugène Chevreul.

Conversely, he demonstrated that the non phosphoric fraction of egg yolk, that he had called "cérébrine" is absolutely identical in chemical breakdown and reactive properties to the "acide cérébrique" identified by Edmond Frémy and M. R. D. Thompson in the brain.

That brick was found during the 1860s by parallel work conducted mainly in Germany, that identified yet a new component of biological fat matters, choline, first in the liver-produced bile by the German chemist Adolph Strecker (Ann.

1868, 148, 77), then shortly afterward in the human brain through the research of Oscar Liebreich in Berlin (who believing he had identified a different matter named it initially "nevrin") and in his wake complementary contributions by Dibkowsky, Baeyer and Wurtz.

In parallel, Gobley developed a number of additional threads of research of a more mainstream type: In cooperation with a French doctor, member of the Academie de Medecine, Jean-Léonard-Marie Poiseuille, he published some results on urea in blood and urine.

Gobley lived just long enough to see this breakthrough bring about the advent of artificial industrial vanillin synthesis, in a process based on glycosides extracted from the sap of pine trees (1874), opening the path to the extraordinary expansion of the use of that very popular flavour.

Fig 1. 1 example of variant phosphatidylcholine , palmitoyl-oleyl- sn -phosphatidylcholine.