The transverse mass is a useful quantity to define for use in particle physics as it is invariant under Lorentz boost along the z direction.
In natural units, it is:
This definition of the transverse mass is used in conjunction with the definition of the (directed) transverse energy
with the transverse momentum vector
It is easy to see that for vanishing mass (
) the three quantities are the same:
The transverse mass is used together with the rapidity, transverse momentum and polar angle in the parameterization of the four-momentum of a single particle:
cos ϕ ,
sin ϕ ,
sinh y )
) gives for the mass of a two particle system: Looking at the transverse projection of this system (by setting
) gives: These are also the definitions that are used by the software package ROOT, which is commonly used in high energy physics.
Hadron collider physicists use another definition of transverse mass (and transverse energy), in the case of a decay into two particles.
This is often used when one particle cannot be detected directly but is only indicated by missing transverse energy.
In that case, the total energy is unknown and the above definition cannot be used.
is the transverse energy of each daughter, a positive quantity defined using its true invariant mass
as: which is coincidentally the definition of the transverse mass for a single particle given above.
Using these two definitions, one also gets the form: (but with slightly different definitions for
For massless daughters, where
, and the transverse mass of the two particle system becomes: where
is the angle between the daughters in the transverse plane.
has an end-point at the invariant mass
of the system with
mass at the Tevatron.
This particle physics–related article is a stub.
You can help Wikipedia by expanding it.