Valve seat

Generally two conical-section surfaces, one with a wider cone angle and one with a narrower cone-angle, are machined above and below the actual mating surface, to form the mating surface to the proper width (called "narrowing" the seat), and to enable it to be properly located with respect to the (wider) mating surface of the valve, so as to provide good sealing and heat transfer, when the valve is closed, and to provide good gas-flow characteristics through the valve, when it is opened.

Some newer engines have seats that are sprayed on rather than being pressed into the head, allowing them to be thinner, creating more efficient transfer of heat through the valve seats, and enabling the valve stems to function at a lower temperature, thus allowing the valve stems (and other parts of the valvetrain) to be thinner and lighter.

[3][4] There are several ways in which a valve seat may be improperly positioned or machined.

These include incomplete seating during the press-fitting step, distortion of the nominally circular valve seat surfaces such that they deviate unacceptably from perfect roundness or waviness, tilt of the machined surfaces relative to the valve guide hole axis, deviation of the valve seat surfaces from concentricity with the valve guide holes, and deviation of the machined conical section of the valve seat from the cone angle that is required to match the valve surface.

Automated quality control of inserted and machined valve seats was historically very difficult to achieve until the advent of digital holography, which has enabled high-definition metrology for measuring all of these listed deviations.

Valve seats in exhibition.