Vividness of Visual Imagery Questionnaire

The large body of evidence confirms that the VVIQ is a valid and reliable psychometric measure of visual image vividness.

Some critics have argued that introspective or ‘self-report’ questionnaires including the VVIQ are “too subjective” and can fall under the influence of social desirability, demand characteristics and other uncontrolled factors (Kaufmann, 198).

However, Richardson observed that “randomizing the order of the items abolishes the gender differences suggesting that the latter are “determined by psychosocial factors rather than by biological ones” (p.177).

Rodway, Gillies and Schepman (2006) used a novel long-term change detection task to determine whether participants with low and high vividness scores on the VVIQ2 showed any performance differences.

Unlike associations between cognitive or perceptual performance measures and VVIQ scores, demand characteristics and social desirability effects can be eliminated as possible explanations of any observed differences between vivid and non-vivid images.

Marks and Issac (1995) mapped electroencephalographic (EEG) activity topographically during visual and motor imagery in vivid and non-vivid imagers.

Amedi, Malach and Pascual-Leone (2005) predicted that VVIQ scores might be correlated with the degree of deactivation of the auditory cortex in individual subjects in functional magnetic resonance imaging (fMRI).

These investigators found a significant positive correlation between the magnitude of A1 deactivation (negative blood-oxygen-level-dependent -BOLD- signal in auditory cortex) and the subjective vividness of visual imagery (Spearman r = 0.73, p < 0.05).

In a meta analysis, Runge, Cheung and D’Angiulli (2017) observed that both VR and VVIQ “are more strongly associated with the neural, than the cognitive and behavioural correlates of imagery.

In a large study with 285 participants, Tabi, Maio, Attaallah, et al. (2022) investigated the association between VVIQ scores, visual short-term memory performance and volumes of brain structures including the hippocampus, amygdala, primary motor cortex, primary visual cortex and the fusiform gyrus.

[6] The neuropsychological evidence indicates that people who are high vs. low VVIQ scorers have associated cortical volumes in structures thought to be responsible for image generation.

VVIQ correlations with Bilateral Hippocampal Volume, Amygdala Volume, Volume of the Primary Motor Cortex, of the Primary Visual Cortex and of the Fusiform Gyrus.[6]
VVIQ correlations with Bilateral Hippocampal Volume, Amygdala Volume, Volume of the Primary Motor Cortex, of the Primary Visual Cortex and of the Fusiform Gyrus. [ 6 ]