Dirichlet density

In mathematics, the Dirichlet density (or analytic density) of a set of primes, named after Peter Gustav Lejeune Dirichlet, is a measure of the size of the set that is easier to use than the natural density.

If A is a subset of the prime numbers, the Dirichlet density of A is the limit if it exists.

However it is usually easier to show that a set of primes has a Dirichlet density, and this is good enough for many purposes.

For example, in proving Dirichlet's theorem on arithmetic progressions, it is easy to show that the set of primes in an arithmetic progression a + nb (for a, b coprime) has Dirichlet density 1/φ(b), which is enough to show that there are an infinite number of such primes, but harder to show that this is the natural density.

Roughly speaking, proving that some set of primes has a non-zero Dirichlet density usually involves showing that certain L-functions do not vanish at the point s = 1, while showing that they have a natural density involves showing that the L-functions have no zeros on the line Re(s) = 1.