Immunoglobulin E

[1] IgE is thought to be an important part of the immune response against infection by certain parasitic worms, including Schistosoma mansoni, Trichinella spiralis,[2][3] and Fasciola hepatica.

IgE also plays a pivotal role in responses to allergens, such as anaphylactic reactions to drugs, bee stings, and antigen preparations used in desensitization immunotherapy.

[15] IgE primes the IgE-mediated allergic response by binding to Fc receptors found on the surface of mast cells and basophils.

Basophils share a common haemopoietic progenitor with mast cells; upon the cross-linking of their surface bound IgE by antigens, also release type 2 cytokines, including IL-4 and IL-13, and other inflammatory mediators.

[8][22] The authors concluded that "a small dose of bee venom conferred immunity to a much larger, fatal dose" and "this kind of venom-specific, IgE-associated, adaptive immune response developed, at least in evolutionary terms, to protect the host against potentially toxic amounts of venom, such as would happen if the animal encountered a whole nest of bees, or in the event of a snakebite".

[8][23][24] The major allergen of bee venom (phospholipase A2) induces a Th2 immune responses, associated with production of IgE antibodies, which may "increase the resistance of mice to challenge with potentially lethal doses".

has a unique long-lived interaction with its high-affinity receptor FcεRI so that basophils and mast cells, capable of mediating inflammatory reactions, become "primed", ready to release chemicals like histamine, leukotrienes, and certain interleukins.

[32] Diagnosis of allergy is most often done by reviewing a person's medical history and finding a positive result for the presence of allergen specific IgE when conducting a skin or blood test.

[34] Currently, allergic diseases and asthma are usually treated with one or more of the following drugs: (1) antihistamines and antileukotrienes, which antagonize the inflammatory mediators histamine and leukotrienes, (2) local or systemic (oral or injectable) corticosteroids, which suppress a broad spectrum of inflammatory mechanisms, (3) short or long-acting bronchodilators, which relax smooth muscle of constricted airway in asthma, or (4) mast cell stabilizers, which inhibit the degranulation of mast cells that is normally triggered by IgE-binding at FcεRI.

In the second approach, antibodies specific for a domain of 52 amino acid residues, referred to as CεmX or M1' (M1 prime), present only on human mIgE on B cells and not on free, soluble IgE, have been prepared and are under clinical development for the treatment of allergy and asthma.

It may be possible to design treatments cheaper than monoclonal antibodies (for instance, small molecule drugs) that use a similar approach to inhibit binding of IgE to its receptor.

The structure of the IgE antibody
The role of mast cells in the development of allergy.
Degranulation processes 1: antigen; 2: IgE antibody; 3: FcεRI receptor; 4: preformed mediators (histamine, proteases, chemokines, heparin); 5: granules; 6: mast cell; 7: newly formed mediators (prostaglandins, leukotrienes, thromboxanes, PAF)