Microcontinuity

In nonstandard analysis, a discipline within classical mathematics, microcontinuity (or S-continuity) of an internal function f at a point a is defined as follows: Here x runs through the domain of f. In formulas, this can be expressed as follows: For a function f defined on

, the definition can be expressed in terms of the halo as follows: f is microcontinuous at

, where the natural extension of f to the hyperreals is still denoted f. Alternatively, the property of microcontinuity at c can be expressed by stating that the composition

is constant on the halo of c, where "st" is the standard part function.

The modern property of continuity of a function was first defined by Bolzano in 1817.

However, Bolzano's work was not noticed by the larger mathematical community until its rediscovery in Heine in the 1860s.

Meanwhile, Cauchy's textbook Cours d'Analyse defined continuity in 1821 using infinitesimals as above.

[1] The property of microcontinuity is typically applied to the natural extension f* of a real function f. Thus, f defined on a real interval I is continuous if and only if f* is microcontinuous at every point of I.

Meanwhile, f is uniformly continuous on I if and only if f* is microcontinuous at every point (standard and nonstandard) of the natural extension I* of its domain I (see Davis, 1977, p. 96).

on the open interval (0,1) is not uniformly continuous because the natural extension f* of f fails to be microcontinuous at an infinitesimal

is not uniformly continuous because f* fails to be microcontinuous at an infinite point

Uniform convergence similarly admits a simplified definition in a hyperreal setting.

converges to f uniformly if for all x in the domain of f* and all infinite n,