[8] Copernicus was born and died in Royal Prussia, a semiautonomous and multilingual region created within the Crown of the Kingdom of Poland from part of the lands regained from the Teutonic Order after the Thirteen Years' War.
[13] According to a later but credible tradition (Jan Brożek), Copernicus was a pupil of Albert Brudzewski, who by then (from 1491) was a professor of Aristotelian philosophy but taught astronomy privately outside the university; Copernicus became familiar with Brudzewski's widely read commentary to Georg von Peuerbach's Theoricæ novæ planetarum and almost certainly attended the lectures of Bernard of Biskupie and Wojciech Krypa of Szamotuły, and probably other astronomical lectures by Jan of Głogów, Michał of Wrocław (Breslau), Wojciech of Pniewy, and Marcin Bylica of Olkusz.
Copernicus the humanist sought confirmation for his growing doubts through close reading of Greek and Latin authors (Pythagoras, Aristarchos of Samos, Cleomedes, Cicero, Pliny the Elder, Plutarch, Philolaus, Heraclides, Ecphantos, Plato), gathering, especially while at Padua, fragmentary historic information about ancient astronomical, cosmological and calendar systems.
He familiarized himself with Greek language and culture with the aid of Theodorus Gaza's grammar (1495) and Johannes Baptista Chrestonius's dictionary (1499), expanding his studies of antiquity, begun at Bologna, to the writings of Bessarion, Lorenzo Valla, and others.
[39] As the time approached for Copernicus to return home, in spring 1503 he journeyed to Ferrara where, on 31 May 1503, having passed the obligatory examinations, he was granted the degree of Doctor of Canon Law (Nicolaus Copernich de Prusia, Jure Canonico ... et doctoratus[43]).
[45][46] Having completed all his studies in Italy, 30-year-old Copernicus returned to Warmia, where he would live out the remaining 40 years of his life, apart from brief journeys to Kraków and to nearby Prussian cities: Toruń (Thorn), Gdańsk (Danzig), Elbląg (Elbing), Grudziądz (Graudenz), Malbork (Marienburg), Königsberg (Królewiec).
From the beginning of 1504, Copernicus accompanied Watzenrode to sessions of the Royal Prussian diet held at Malbork and Elbląg and, write Dobrzycki and Hajdukiewicz, "participated ... in all the more important events in the complex diplomatic game that ambitious politician and statesman played in defense of the particular interests of Prussia and Warmia, between hostility to the [Teutonic] Order and loyalty to the Polish Crown.
Copernicus had translated the Greek verses into Latin prose, and he published his version as Theophilacti scolastici Simocati epistolae morales, rurales et amatoriae interpretatione latina, which he dedicated to his uncle in gratitude for all the benefits he had received from him.
[49] Some time before 1514, Copernicus wrote an initial outline of his heliocentric theory known only from later transcripts, by the title (perhaps given to it by a copyist), Nicolai Copernici de hypothesibus motuum coelestium a se constitutis commentariolus—commonly referred to as the Commentariolus.
It was a succinct theoretical description of the world's heliocentric mechanism, without mathematical apparatus, and differed in some important details of geometric construction from De revolutionibus; but it was already based on the same assumptions regarding Earth's triple motions.
Tycho Brahe would include a fragment from the Commentariolus in his own treatise, Astronomiae instauratae progymnasmata, published in Prague in 1602, based on a manuscript that he had received from the Bohemian physician and astronomer Tadeáš Hájek, a friend of Rheticus.
He would maintain both these residences to the end of his life, despite the devastation of the chapter's buildings by a raid against Frauenburg carried out by the Teutonic Order in January 1520, during which Copernicus's astronomical instruments were probably destroyed.
In the play, Copernicus was caricatured as the eponymous Morosophus, a haughty, cold, aloof man who dabbled in astrology, considered himself inspired by God, and was rumored to have written a large work that was moldering in a chest.
At about 1532, Copernicus had basically completed his work on the manuscript of Dē revolutionibus orbium coelestium; but despite urging by his closest friends, he resisted openly publishing his views, not wishing—as he confessed—to risk the scorn "to which he would expose himself on account of the novelty and incomprehensibility of his theses.
Therefore with the utmost earnestness I entreat you, most learned sir, unless I inconvenience you, to communicate this discovery of yours to scholars, and at the earliest possible moment to send me your writings on the sphere of the universe together with the tables and whatever else you have that is relevant to this subject ...[61]By then, Copernicus's work was nearing its definitive form, and rumors about his theory had reached educated people all over Europe.
Ptolemy's system employed devices, including epicycles, deferents and equants, to account for observations that the paths of these bodies differed from simple, circular orbits centered on the Earth.
It listed the "assumptions" upon which the theory was based, as follows:[101] De revolutionibus itself was divided into six sections or parts, called "books":[104] Georg Joachim Rheticus could have been Copernicus's successor, but did not rise to the occasion.
[108] This claim was trenchantly criticised by Edward Rosen,[s] and has been decisively disproved by Owen Gingerich, who examined nearly every surviving copy of the first two editions and found copious marginal notes by their owners throughout many of them.
For by a foolish effort he [Copernicus] tried to revive the weak Pythagorean opinion [that the element of fire was at the center of the Universe], long ago deservedly destroyed, since it is expressly contrary to human reason and also opposes holy writ.
Robert Westman describes it as becoming a "dormant" viewpoint with "no audience in the Catholic world" of the late sixteenth century, but also notes that there is some evidence that it did become known to Tommaso Caccini, who would criticize Galileo in a sermon in December 1613.
"[120] In his commentary on Psalms 93:1 he states that "The heavens revolve daily, and, immense as is their fabric and inconceivable the rapidity of their revolutions, we experience no concussion ... How could the earth hang suspended in the air were it not upheld by God's hand?
"[121] One sharp point of conflict between Copernicus's theory and the Bible concerned the story of the Battle of Gibeon in the Book of Joshua where the Hebrew forces were winning but whose opponents were likely to escape once night fell.
According to Anthony Lauterbach, while eating with Martin Luther the topic of Copernicus arose during dinner on 4 June 1539 (in the same year as professor George Joachim Rheticus of the local University had been granted leave to visit him).
After receiving the first pages of Narratio Prima from Rheticus himself, Melanchthon wrote to Mithobius (physician and mathematician Burkard Mithob of Feldkirch) on 16 October 1541 condemning the theory and calling for it to be repressed by governmental force, writing "certain people believe it is a marvelous achievement to extol so crazy a thing, like that Polish astronomer who makes the earth move and the sun stand still.
"[122] Melanchthon went on to cite Bible passages and then declare "Encouraged by this divine evidence, let us cherish the truth and let us not permit ourselves to be alienated from it by the tricks of those who deem it an intellectual honor to introduce confusion into the arts.
In a passing remark in an essay on the origin of the sabbath, he characterised "the late hypothesis, fixing the sun as in the centre of the world" as being "built on fallible phenomena, and advanced by many arbitrary presumptions against evident testimonies of Scripture.
He dismissed arguments that they should be taken metaphorically, saying "Replies which assert that Scripture speaks according to our mode of understanding are not satisfactory: both because in explaining the Sacred Writings the rule is always to preserve the literal sense, when it is possible, as it is in this case; and also because all the [Church] Fathers unanimously take this passage to mean that the Sun which was truly moving stopped at Joshua's request.
[137] In 1633, Galileo Galilei was convicted of grave suspicion of heresy for "following the position of Copernicus, which is contrary to the true sense and authority of Holy Scripture",[138] and was placed under house arrest for the rest of his life.
Copernicus's father lent money to Poland's King Casimir IV Jagiellon to finance the war against the Teutonic Knights,[167] but the inhabitants of Royal Prussia also resisted the Polish crown's efforts for greater control over the region.
[175] Polish astronomer Konrad Rudnicki calls the discussion a "fierce scholarly quarrel in ... times of nationalism" and describes Copernicus as an inhabitant of a German-speaking territory that belonged to Poland, himself being of mixed Polish-German extraction.