Photocathode

A photocathode is a surface engineered to convert light (photons) into electrons using the photoelectric effect.

Photocathodes are important in accelerator physics where they are utilised in a photoinjector to generate high brightness electron beams.

Photocathodes are also commonly used as the negatively charged electrode in a light detection device such as a photomultiplier, phototube and image intensifier.

Quantum efficiency is a unitless number that measures the sensitivity of the photocathode to light.

For many applications, QE is the most important property as the photocathodes are used solely for converting photons into an electrical signal.

For some applications, the initial momentum distribution of emitted electrons is important and the mean transverse energy (MTE) and thermal emittance are popular metrics for this.

The MTE is the variance of the transverse momentum in a direction along the photocathode's surface and is most commonly reported in units of milli-electron volts.

In high brightness photoinjectors, the MTE helps to determine the initial emittance of the beam which is the area in phase space occupied by the electrons.

An equivalent definition of MTE is the temperature of electrons emitted in vacuum.

[6] The MTE of electrons emitted from commonly used photocathodes, such as polycrystalline metals, is limited by the excess energy (the difference between the energy of the incident photons and the photocathode's work function) provided to the electrons.

To limit MTE, photocathodes are often operated near the photoemission threshold, where the excess energy tends to zero.

[7] Due to conservation of transverse momentum and energy in the photoemission process, the MTE of a clean, atomically-ordered, single crystalline photocathode is determined by the material's band structure.

An ideal band structure for low MTEs is one that does not allow photoemission from large transverse momentum states.

[8] Outside of accelerator physics, MTE and thermal emittance play a role in the resolution of proximity-focused imaging devices that use photocathodes.

Many photocathodes require excellent vacuum conditions to function and will become "poisoned" when exposed to contaminates.

Additionally, using the photocathodes in high current applications will slowly damage the compounds as they are exposed to ion back-bombardment.

Cathode death is modeled as a decaying exponential as a function of either time or emitted charge.

[10][11] For many years the photocathode was the only practical method for converting light to an electron current.

Since most cathodes are sensitive to air the construction of photocathodes typically occurs after the enclosure has been evacuated.

In operation the photocathode requires an electric field with a nearby positive anode to assure electron emission.

Molecular beam epitaxy is broadly applied in today's manufacturing of photocathode.

By using a substrate with matched lattice parameters, crystalline photocathodes can be made and electron beams can come out from the same position in lattice's Brillouin zone to get high brightness electron beams.

A reflective type is typically formed on an opaque metal electrode base, where the light enters and the electrons exit from the same side.

The effectiveness of a photocathode is commonly expressed as quantum efficiency, that being the ratio of emitted electrons vs. impinging quanta (of light).

The efficiency varies with construction as well, as it can be improved with a stronger electric field.

Although a plain metallic cathode will exhibit photoelectric properties, the specialized coating greatly increases the effect.

A photocathode usually consists of alkali metals with very low work functions.

The coating releases electrons much more readily than the underlying metal, allowing it to detect the low-energy photons in infrared radiation.

The lens transmits the radiation from the object being viewed to a layer of coated glass.

The photons strike the metal surface and transfer electrons to its rear side.

Cs-K-Sb photocathode centered on a Molybdenum plug (a) after growth in the preparation chamber and (b) after transfer into the photoinjector