[6] The practical meaning of "cleared the neighborhood" is that a planet is comparatively massive enough for its gravitation to control the orbits of all objects in its vicinity.
Dwarf planets are bodies orbiting the Sun that are massive and warm enough to have achieved hydrostatic equilibrium, but have not cleared their neighbourhoods of similar objects.
Estimates from an IAU question-and-answer press release from 2006, giving 800 km radius and 0.5×1021 kg mass as cut-offs that normally would be enough for hydrostatic equilibrium, while stating that observation would be needed to determine the status of borderline cases.
[51] In 2023, Emery et al. wrote that near-infrared spectroscopy by the James Webb Space Telescope (JWST) in 2022 suggests that Sedna, Gonggong, and Quaoar underwent internal melting, differentiation, and chemical evolution, like the larger dwarf planets Pluto, Eris, Haumea, and Makemake, but unlike "all smaller KBOs".
On the other hand, the surfaces of Sedna, Gonggong, and Quaoar have low abundances of CO and CO2, similar to Pluto, Eris, and Makemake, but in contrast to smaller bodies.
They hypothesised that Quaoar originally had a rapid rotation and was in hydrostatic equilibrium, but that its shape became "frozen in" and did not change as it spun down due to tidal forces from its moon Weywot.
[57] The table below gives Orcus, Quaoar, Gonggong, and Sedna as additional consensus dwarf planets; slightly smaller Salacia, which is larger than 400 km radius, has been included as a borderline case for comparison, (and is therefore italicized).
Vesta (radius 262.7±0.1 km), the second-largest asteroid, appears to have a differentiated interior and therefore likely was once a dwarf planet, but it is no longer very round today.
[75] The fifth-largest asteroid, Interamnia (radius 166±3 km), is icy and has a shape consistent with hydrostatic equilibrium for a slightly shorter rotation period than it now has.
[76] There are at least 19 natural satellites in the Solar System that are known to be massive enough to be close to hydrostatic equilibrium: seven of Saturn, five of Uranus, four of Jupiter, and one each of Earth, Neptune, and Pluto.
In addition to not being in equilibrium, Mimas and Tethys have very low densities and it has been suggested that they may have non-negligible internal porosity,[78][79] in which case they would not be satellite planets.