Stefan Schuster studied biophysics at the Humboldt University Berlin and wrote his PhD thesis under the supervision of Prof. Reinhart Heinrich at the Department of Theoretical Biophysics at Humboldt University, Berlin (Title: "Theoretical studies on the interrelation between time hierarchy in enzymatic reaction systems and optimization principles").
Schuster and his coworkers used the method, for example, for analyzing penicillin production[9] and NAD+ metabolism[10] as well as for predicting the viability of Escherichia coli mutants.
[12] An application of intense biochemical interest is the question whether humans and other higher animals could convert fatty acids into sugar.
While biochemical textbook knowledge says that this would be infeasible, in silico analyses by Christoph Kaleta, Stefan Schuster and coworkers showed that there are, in principle, several entangled routes on which gluconeogenesis from fatty acid is feasible.
[17] He wrote: "For general readers, it would be a major advance if books like this one could help to overthrow the ideas of rate-limiting steps that have bedevilled the biochemical conception of metabolism for so long, preventing biotechnology from realizing many of the objectives that were promised when genetic engineering first became possible.