Sugarscape

John Conway's agent-based simulation "Game of Life" was enhanced and applied to Schelling's original idea by Joshua M. Epstein and Robert Axtell in their book Growing Artificial Societies.

They can leave pollution, die, reproduce, inherit sources, transfer information, trade or borrow sugar, generate immunity or transmit diseases - depending on the specific scenario and variables defined at the set-up of the model.

Sugar in simulation could be seen as a metaphor for resources in an artificial world through which the examiner can study the effects of social dynamics such as evolution, marital status and inheritance on populations.

[3] Exact simulation of the original rules provided by J. Epstein & R. Axtell in their book can be problematic[4] and it is not always possible to recreate the same results as those presented in Growing Artificial Societies.

The team of R. M. D’Souza, M. Lysenko and K Rahmani from Michigan Technological University used a Sugarscape model to demonstrate the power of Graphics processing units (GPU) in ABM simulations with over 50 updates per second with agent populations exceeding 2 million.