Thrombotic microangiopathy

[1] The clinical presentation of TMA, although dependent on the type, typically includes: fever, microangiopathic hemolytic anemia (see schistocytes in a blood smear), kidney failure, thrombocytopenia and neurological manifestations.

[2] With more threatening cases of TMA, and also as the condition progresses without treatment, multi-organ failure or injury is also possible, as the hyaline thrombi can spread to and affect the brain, kidneys, heart, liver, and other major organs.

Either of these pathways will result in decreased endothelial thromboresistance, leukocyte adhesion to damaged endothelium, complement consumption, enhanced vascular shear stress, and abnormal vWF fragmentation.

The central and primary event in this progression is injury to the endothelial cells, which reduces the production of prostaglandin and prostacyclin, ultimately resulting in the loss of physiological thromboresistance, or high thrombus formation rate in blood vessels.

Leukocyte adhesion to the damaged endothelial wall and abnormal von Willebrand factor (or vWF) release can also contribute to the increase in thrombus formation.

[3] Several chemotherapeutic drugs have also been shown to cause damage to the epithelial layer by reducing the ability for the cells to produce prostacyclin, ultimately resulting in chemotherapy-associated HUS, or C-HUS.

[5] Congenital and idiopathic TTP are generally associated with deficiencies in ADAMTS13, a zinc metalloprotease responsible for cleaving Very Large vWF Multimers in order to prevent inappropriate platelet aggregation and thrombosis in the microvasculature.

The implication is that the occurrence of thrombotic microangiopathy is restricted to severely immunosuppressed persons receiving higher Valacyclovir dosages than are required to control HSV infection.