In particle physics, deep inelastic scattering is the name given to a process used to probe the insides of hadrons (particularly the baryons, such as protons and neutrons), using electrons, muons and neutrinos.
Henry Way Kendall, Jerome Isaac Friedman and Richard E. Taylor were joint recipients of the Nobel Prize of 1990 "for their pioneering investigations concerning deep inelastic scattering of electrons on protons and bound neutrons, which have been of essential importance for the development of the quark model in particle physics.
Also, note that in the perturbative approximation it is a high-energy virtual photon emitted from the lepton and absorbed by the target hadron which transfers energy to one of its constituent quarks, as in the adjacent diagram.
Some bosons were being routinely detected, although the W+, W− and Z0 particles of the electroweak force were only categorically seen in the early 1980s, and gluons were only firmly pinned down at DESY in Hamburg at about the same time.
In 1968, at the Stanford Linear Accelerator Center (SLAC), electrons were fired at protons and neutrons in atomic nuclei.
The experiments were important because not only did they confirm the physical reality of quarks, but also proved again that the Standard Model was the correct avenue of research for particle physicists to pursue.