[1] Born in Miami Springs, Florida, Stevens received his bachelor's in chemistry from The College of Wooster in 1975 and his Ph.D. from Ohio State University in 1979 where he studied with Daryle Busch.
In a series of elegant studies, Stevens and his coworkers were able to demonstrate that these catalysts had an unusual ability to incorporate long-chain branches into polyethylene, leading to a new class of highly processable ethylene copolymers (US Patent 5,272,236 (and others)).
Homogeneous, molecular-based or “single site” olefin polymerization catalysts have their genesis in the 1950s, with the early discoveries of Breslow and Newberg of Group 4 metallocenes activated with aluminum alkyls.
The discoveries of MAO and fluorinated aryl borate cocatalysts reenergized this field, leading to the promise of precise control of molecular architecture for these commercially important polymers.
Stevens’ work here led to an amazing hafnium-based catalyst family (few experts would have believed a hafnium complex would have the needed activity) that enables the polymerization of propylene to isotactic polymers and copolymers in a high temperature solution process.
In a series of papers and patents starting in 2002, Stevens, along with colleagues and collaborators, disclosed new catalysts which are non-conventional, counter-intuitive, subtle, and have an unprecedented stereoselectivity along with remarkable high temperature performance.