James Ferris

His interests in the origins of life led him to explore in detail a diverse array of prebiotic reaction mechanisms, and to make the discovery of clay-directed RNA synthesis.

In the late 60s, Ferris published a set of collaborative studies with Leslie Orgel that elucidated several prebiotic pathways for the synthesis of biologically relevant macromolecules (including nucleobases, amino acids, and precursors thereof) from hydrogen cyanide and cyano compounds.

[1] In another series of publications on chemical evolution, Ferris further expanded the understanding of these and other reactions, demonstrating, for example, mechanisms of hydrogen cyanide polymerization under a variety of conditions leading to purines, pyrimidines, amino acids, and a host of organic precursor molecules.

In early publications involving montmorillonite clays, Ferris demonstrated that, following adsorption of the nucleotides to its surface, the mineral can catalytically enhance the formation of polyadenine and polycytosine oligonucleotides and cyclic adenine monophosphates.

[3] The composition of montmorillonite clays can vary, and the presence of metal cations to stabilize the mineral's distinct negative charges were shown to affect binding and catalysis, as well.

By preparing analogs to Titan's atmospheric aerosols and irradiating the mixture of gases used, Ferris was able to probe refractive indices and observe synthesis reactions which could be used as models and compared directly to measurements of spectroscopy data recovered from NASA's Cassini-Huygens mission to Saturn.