Software visualization

Software visualization[1][2] or software visualisation refers to the visualization of information of and related to software systems—either the architecture of its source code or metrics of their runtime behavior—and their development process by means of static, interactive or animated 2-D or 3-D[3] visual representations of their structure,[4] execution,[5] behavior,[6] and evolution.

Key information categories include: The objectives of software visualization are to support the understanding of software systems (i.e., its structure) and algorithms (e.g., by animating the behavior of sorting algorithms) as well as the analysis and exploration of software systems and their anomalies (e.g., by showing classes with high coupling) and their development and evolution.

There are different approaches to map source code to a visual representation such as by software maps[10] Their objective includes, for example, the automatic discovery and visualization of quality defects in object-oriented software systems and services.

A small-scale 2003 survey of researchers active in the reverse engineering and software maintenance fields found that a wide variety of visualization tools were used, including general purpose graph drawing packages like GraphViz and GraphEd, UML tools like Rational Rose and Borland Together, and more specialized tools like Visualization of Compiler Graphs (VCG) and Rigi.

[11]: 99–100  The range of UML tools that can act as a visualizer by reverse engineering source is by no means short; a 2007 book noted that besides the two aforementioned tools, ESS-Model, BlueJ, and Fujaba also have this capability, and that Fujaba can also identify design patterns.