Engineering analysis involves the application of scientific/mathematical analytic principles and processes to reveal the properties and state of a system, device or mechanism under study.
Engineering analysis is decompositional: it proceeds by separating the engineering design into the mechanisms of operation or failure, analyzing or estimating each component of the operation or failure mechanism in isolation, and re-combining the components according to basic physical principles and natural laws.
[1][2][3][4] Engineering analysis and applied analysis are synonym terms for mathematical analysis/calculus beyond basic differential equations such as applied for various advanced physics & engineering topics (including Fourier analysis, Lagrangian & Hamiltonian mechanics, Laplace transforms, Sturm–Liouville theory, and others) but still can involve mathematical proofs.
Engineering analysis is the primary method for predicting and handling issues with remote systems such as satellites and rovers.
Together trending and analysis allow operators to both predict potential situations and identify anomalous events that threaten a remote system.