Ethylene glycol dinitrate

Unlike nitroglycerine, the chemical has a perfect oxygen balance, meaning that its ideal exothermic decomposition would completely convert it to low energy carbon dioxide, water, and nitrogen gas, with no excess unreacted substances, without needing to react with anything else.

Pure EGDN was first produced by the Belgian chemist Louis Henry (1834–1913) in 1870 by dropping a small amount of ethylene glycol into a mixture of nitric and sulfuric acids cooled to 0 °C.

[4][5][6] Other investigators preparing NGC before publication in 1926 of Rinkenbach's work included: Champion (1871), Neff (1899) & Wieland & Sakellarios (1920), Dautriche, Hough & Oehme.

The American chemist William Henry Rinkenbach (1894–1965) prepared EGDN by nitrating purified glycol obtained by fractioning the commercial product under pressure of 40mm Hg, and at a temperature of 120°.

When ethylene glycol dinitrate is rapidly heated to 215 °C, it explodes; this is preceded by partial decomposition similar to that of nitroglycerin.

Skeletal formula of ethylene glycol dinitrate
Ball-and-stick model of the ethylene glycol dinitrate molecule
NFPA 704 four-colored diamond Health 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroform Flammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oil Instability 4: Readily capable of detonation or explosive decomposition at normal temperatures and pressures. E.g. nitroglycerin Special hazards (white): no code