Human interactome

[4] However, it became apparent that inherent to these studies is an emphasis on clinical outcome rather than a comprehensive understanding of human disease; indeed to date the most significant contributions of GWAS have been restricted to the “low-hanging fruit” of direct single mutation disorders, prompting a systems biology approach to genomic analysis.

A statistical approach to calculating the number of interactions in humans gives an estimate of around 650 000, one order of magnitude bigger than Drosophila and 3 times larger than C.

[11] A more recent effort, HINT-KB,[10] attempts to amalgamate most of the current PPI databases, but filtering systematically erroneous interactions as well as trying to correct for inherent sociological sampling biases in literature curated datasets.

Futschik et al.[28] performed a meta analysis of eight interactome maps and found that of 57 000 interacting proteins in total, there was a small (albeit statistically significant) overlap between the different databases, indicating considerable selection and detection biases.

This was part of much larger efforts for PPI verification; interaction networks are typically validated further by using a combination of coexpression profiles, protein structural information, Gene ontology terms, topological considerations, and colocalization[26][30] before being considered “high-confidence”.

A recent resource paper (November 2014) [17] attempts to provide a more comprehensive proteome level map of the human interactome.

It found vast uncharted territory in the human interactome, and used diverse methods to build a new interactome map correcting for curation bias, including probing all pairwise combinations of 13 000 protein products for interaction using Yeast two hybrid and co-affinity purification, in a massive coordinated effort across research labs in Canada and the United States.