Stream metabolism

Stream metabolism can be influenced by a variety of factors, including physical characteristics of the stream (slope, width, depth, and speed/volume of flow), biotic characteristics of the stream (abundance and diversity of organisms ranging from bacteria to fish), light and nutrient availability to fuel primary production, organic matter to fuel respiration, water chemistry and temperature, and natural or human-caused disturbance, such as dams, removal of riparian vegetation, nutrient pollution, wildfire or flooding.

Measuring stream metabolic state is important to understand how disturbance may change the available primary productivity, and whether and how that increase or decrease in NEP influences foodweb dynamics, allochthonous/autochthonous pathways, and trophic interactions.

One commonly used method for determining metabolic state in an aquatic system is daily changes in oxygen concentration, from which GPP, ER, and net daily metabolism can be estimated.

Disturbances can affect trophic relationships in a variety of ways, such as simplifying foodwebs, causing trophic cascades, and shifting carbon sources and major pathways of energy flow (Power et al. 1985, Power et al. 2008).

Wildfire disturbance may have similar metabolic and trophic impacts in streams.