[1] Among other methods, 2-amino-5-chlorobenzophenone can be synthesized by reducing isoxazole through iron powder.
[3] 2-Amino-5-chlorobenzophenone and its derivatives can be used to produce benzodiazepines, a few examples are listed below; Prazepam can be produced by the acylation of 2-amino-5-chlorobenzophenone with cyclo-propanecarbonyl chloride and triethylamine, 2-cyclopropylmethylamino-5-chlorobenzhydrol is then obtained by using lithium aluminium hydride as a reducing agent, this product is then oxidized by using manganese dioxide.
The resulting compound goes another acylation reaction using phthalimidoacetyl chloride and finally treated with hydrazine hydrate to produce prazepam.
[4] Lorazepam can be made using 2-amino-2′,5-dichlorobenzophenone (a derivative of 2-amino-5-chlorobenzophenone), which is first reacted with hydroxylamine, the obtained product is then reacted with chloroacetyl chloride to give 6-chloro-2-chlormethyl-4-(2′-chlorophenyl)quinazolin-3-oxide, a reaction with methylamine produces ring expansion and rearrangement, which forms 7-chloro-2-methylamino-5-(2′-chlorphenyl)-3H-1,4-benzodiazepin-4-oxide, acetylation with acetic anhydride gives a product which goes under hydrolysis by reacting it with hydrochloric acid, this gives 7-chloro-5-(2′-chlorophenyl)-1,2-dihydro-3H-1,4-benzodiazepin-2-on-4-oxide, a second reaction with acetic anhydride gives 7-chloro-1,3-dihydro-3-acetoxy-5-(2′-chlorphenyl)-2H-benzodiazepin-2-one, the last step involves hydrolysis of this product under sodium hydroxide to give lorazepam.
[5] To make chlordiazepoxide, 2-amino-5-chlorobenzophenone is first reacted with hydroxylamine, the resulting product is then reacted with chloracetyl chloride in acetic acid, resulting in 6-chloro-2-chloromethyl-4-phenylquinazolin-3-oxide, reaction with methylamine gives chlordiazepoxide.