Prominent in this movement were Vesalius and Harvey, who used experimentation and careful observation in physiology, and naturalists such as Linnaeus and Buffon who began to classify the diversity of life and the fossil record, as well as the development and behavior of organisms.
[1] Between around 3000 and 1200 BCE, the Ancient Egyptians and Mesopotamians made contributions to astronomy, mathematics, and medicine,[2][3] which later entered and shaped Greek natural philosophy of classical antiquity, a period that profoundly influenced the development of what came to be known as biology.
Ayurvedic writers also classified living things into four categories based on the method of birth (from the womb, eggs, heat & moisture, and seeds) and explained the conception of a fetus in detail.
In 1543, Andreas Vesalius inaugurated the modern era of Western medicine with his seminal human anatomy treatise De humani corporis fabrica, which was based on dissection of corpses.
[22] Bestiaries—a genre that combines both the natural and figurative knowledge of animals—also became more sophisticated, especially with the work of William Turner, Pierre Belon, Guillaume Rondelet, Conrad Gessner, and Ulisse Aldrovandi.
[23] Artists such as Albrecht Dürer and Leonardo da Vinci, often working with naturalists, were also interested in the bodies of animals and humans, studying physiology in detail and contributing to the growth of anatomical knowledge.
But it was not until Antonie van Leeuwenhoek's dramatic improvements in lensmaking beginning in the 1670s—ultimately producing up to 200-fold magnification with a single lens—that scholars discovered spermatozoa, bacteria, infusoria and the sheer strangeness and diversity of microscopic life.
[32] Debate over another flood, the Noachian, catalyzed the development of paleontology; in 1669 Nicholas Steno published an essay on how the remains of living organisms could be trapped in layers of sediment and mineralized to produce fossils.
The term biology in its modern sense appears to have been introduced independently by Thomas Beddoes (in 1799),[34] Karl Friedrich Burdach (in 1800), Gottfried Reinhold Treviranus (Biologie oder Philosophie der lebenden Natur, 1802) and Jean-Baptiste Lamarck (Hydrogéologie, 1802).
[35][36] The word itself appears in the title of Volume 3 of Michael Christoph Hanow's Philosophiae naturalis sive physicae dogmaticae: Geologia, biologia, phytologia generalis et dendrologia, published in 1766.
[43] The British naturalist Charles Darwin, combining the biogeographical approach of Humboldt, the uniformitarian geology of Lyell, Thomas Malthus's writings on population growth, and his own morphological expertise, created a more successful evolutionary theory based on natural selection; similar evidence led Alfred Russel Wallace to independently reach the same conclusions.
[44] The 1859 publication of Darwin's theory in On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life is often considered the central event in the history of modern biology.
Over the course of the 19th century, the scope of physiology expanded greatly, from a primarily medically oriented field to a wide-ranging investigation of the physical and chemical processes of life—including plants, animals, and even microorganisms in addition to man.
Scientists in the rising field of cytology, armed with increasingly powerful microscopes and new staining methods, soon found that even single cells were far more complex than the homogeneous fluid-filled chambers described by earlier microscopists.
Robert Brown had described the nucleus in 1831, and by the end of the 19th century cytologists identified many of the key cell components: chromosomes, centrosomes mitochondria, chloroplasts, and other structures made visible through staining.
By the 1880s, bacteriology was becoming a coherent discipline, especially through the work of Robert Koch, who introduced methods for growing pure cultures on agar gels containing specific nutrients in Petri dishes.
The long-held idea that living organisms could easily originate from nonliving matter (spontaneous generation) was attacked in a series of experiments carried out by Louis Pasteur, while debates over vitalism vs. mechanism (a perennial issue since the time of Aristotle and the Greek atomists) continued apace.
[58] Physiologists such as Claude Bernard explored (through vivisection and other experimental methods) the chemical and physical functions of living bodies to an unprecedented degree, laying the groundwork for endocrinology (a field that developed quickly after the discovery of the first hormone, secretin, in 1902), biomechanics, and the study of nutrition and digestion.
[69] In the 1970s Stephen Jay Gould and Niles Eldredge proposed the theory of punctuated equilibrium which holds that stasis is the most prominent feature of the fossil record, and that most evolutionary changes occur rapidly over relatively short periods of time.
[71] Also in the early 1980s, statistical analysis of the fossil record of marine organisms published by Jack Sepkoski and David M. Raup led to a better appreciation of the importance of mass extinction events to the history of life on earth.
After early work with Drosophila and maize, the adoption of simpler model systems like the bread mold Neurospora crassa made it possible to connect genetics to biochemistry, most importantly with Beadle and Tatum's one gene-one enzyme hypothesis in 1941.
[77] Oswald Avery showed in 1943 that DNA was likely the genetic material of the chromosome, not its protein; the issue was settled decisively with the 1952 Hershey–Chase experiment—one of many contributions from the so-called phage group centered around physicist-turned-biologist Max Delbrück.
In their famous paper "Molecular structure of Nucleic Acids", Watson and Crick noted coyly, "It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material.
[84] At the Pasteur Institute, François Jacob and Jacques Monod followed the 1959 PaJaMo experiment with a series of publications regarding the lac operon that established the concept of gene regulation and identified what came to be known as messenger RNA.
[88] Immunology in particular became linked with molecular biology, with innovation flowing both ways: the clonal selection theory developed by Niels Jerne and Frank Macfarlane Burnet in the mid-1950s helped shed light on the general mechanisms of protein synthesis.
Departments and disciplines fractured as organismic biologists asserted their importance and independence: Theodosius Dobzhansky made the famous statement that "nothing in biology makes sense except in the light of evolution" as a response to the molecular challenge.
Following the pioneering ideas of Lynn Margulis on endosymbiotic theory, which holds that some of the organelles of eukaryotic cells originated from free living prokaryotic organisms through symbiotic relationships, even the overall division of the tree of life was revised.
Into the 1990s, the five domains (Plants, Animals, Fungi, Protists, and Monerans) became three (the Archaea, the Bacteria, and the Eukarya) based on Carl Woese's pioneering molecular systematics work with 16S rRNA sequencing.
[98] The development and popularization of the polymerase chain reaction (PCR) in mid-1980s (by Kary Mullis and others at Cetus Corp.) marked another watershed in the history of modern biotechnology, greatly increasing the ease and speed of genetic analysis.
[101] The Human Genome Project—the largest, most costly single biological study ever undertaken—began in 1988 under the leadership of James D. Watson, after preliminary work with genetically simpler model organisms such as E. coli, S. cerevisiae and C. elegans.